Fachbereich Physik

Navigation und Suche der Universität Osnabrück



Networks, Complexity, and Energy Systems (PHY-NCES-15)




1. Introduction and overview.
2. Energy system modelling on large scales. Integration of meteorological
aspects. Grid extension and their technological alternatives[1].
3. Power grids as complex hierarchical networks. Introduction to the mes-
hed structure and relevant elements of the power system[2].
4. Stability of power grids. Load flows and their complex interaction with
the structure of power production, demand, and the grid[2, 3]. The role
of inertia and balancing power[4].
5. The structure and function of complex networks: Classification of net-
works. How to characterize networks? Three important network “fami-
lies”. See Refs. [5, 6].
6. The structure and function of complex networks. Weighted networks;
Network models. Community structure. See Refs. [5] and [7].
7. Dynamics and phenomena in complex networks: Modelling stochastic
dynamics on complex networks[8].
8. Dynamics and phenomena in complex networks: The role of wind ener-
gy in the frequency stability of power grids[9].
9. Dynamics and phenomena in complex networks: Self-organized syn-
chronization in power-grids[10, 11].
10. Dynamics and phenomena in complex networks: Spreading processes[5];
Percolation and Self-organized criticality[12]; Cascade of failures in
power grids[13].
11. Dynamics and phenomena in complex networks: Dynamical networks;
Adaptative networks; Networks of Networks. See Refs. [14].
12. Economic aspects of energy system operation and planning: Unit com-
mitment and optimized utilization of resources[15]. Oral presentations
by students.

[1] “Integration of Renewable Energy Sources in future power systems: The
role of storage”, S. Weitemeyer et al., Renewable Energy 75 (2015).
[2] “Power system stability and control”, P. Kundur, N.J. Balu, and
M.G. Lauby, McGraw-hill New York (1994).
[3] “How Dead Ends Undermine Power Grid Stability”, P. Menck et al.,
Nature Communications 5 (2014).
[4] “Policy 1: Load-Frequency Control and Performance”, ENTSO-E
[5] “Complex networks: Structure and dynamics”, S. Boccaletti, V. Latora,
Y. Moreno, M. Chavez, D.-U. Hwang, Physics Reports 424(4-5), 175-308
[6] “Statistical mechanics of complex networks”, R. Albert and A.-L. Ba-
rabasi, Rev. Mod. Phys., 74, 47-97 (2002).
[7] “Community detection in graphs”, S. Fortunato, Physics Reports
486(35) 75174 (2010).
[8] “Approaching complexity by stochastic methods: From biological sys-
tems to turbulence”, R. Friedrich, J. Peinke, M. Sahimi, M.R.R. Tabar,
Physics Reports 506 87-162 (2011).
[9] “Self-organized synchronization in decentralized power grids”, M.
Rohden, A. Sorge, M. Timme and D. Witthaut, Phys. Rev. Lett. 109 064101
[10] “Self-organized synchronization and voltage stability in networks of syn-
chronous machines”, K. Schmietendeorf, J. Peinke, R. Friedrich and
O. Kamps, Eur. Phys. J. Special Topics 223, 2577-2592 (2014).
[11] “Synchronization in complex networks”, A. Arenas, A. D ́
J. Kurths, Y. Moreno, C. Zhou, Physics Reports 469(3) 93153 (2008).
[12] “Critical phenomena in complex networks”, S.N. Dorogovtsev,
A.V. Goltsev, J.F.F. Mendes, Rev. Mod. Phys. 80, 1275, (2008).
[13] “Catastrophic cascade of failures in interdependent networks”,
S.V. Buldyrev, R. Parshani, G. Paul, H.E. Stanley and S. Havlin, Nature
464 08932, 1025-1028 (2010).
[14] “Adaptive coevolutionary networks: a review”, T. Gross, B. Blasius,
J. Roy. Soc. Interface 5 (20), 259-271 (2008).
[15] “Cost-minimized combinations of wind power, solar power and electro-
chemical storage, powering the grid up to 99.9% of the time”, C. Bu-
dischak et al., Journal of Power Sources 225 (2013).

Weitere Angaben

Ort: 32/218
Zeiten: Mi. 14:00 - 16:00 (wöchentlich)
Erster Termin: Mi , 03.04.2019 14:00 - 16:00, Ort: 32/218
Veranstaltungsart: Vorlesung (Offizielle Lehrveranstaltungen)


  • Physik > Masterstudiengang Physik/Physics > Wahlpflichtbereich